The Q-onsager Algebra

نویسنده

  • Paul Terwilliger
چکیده

where β = q+q and δ = −(q − q) 2 . (TD) can be regarded as a q-analogue of the DolanGrady relations and we call A the q-Onsager algebra. We classify the finite-dimensional irreducible representations of A. All such representations are explicitly constructed via embeddings of A into the Uq(sl2)-loop algebra. As an application, tridiagonal pairs of qRacah type over C are classified in the case where q is not a root of unity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bethe Ansatz and Symmetry in Superintegrable Chiral Potts Model and Root-of-unity Six-vertex Model

We examine the Onsager algebra symmetry of τ -matrices in the superintegrable chiral Potts model. The comparison of Onsager algebra symmetry of the chiral Potts model with the sl2-loop algebra symmetry of six-vertex model at roots of unity is made from the aspect of functional relations using the Q-operator and fusion matrices. The discussion of Bethe ansatz for both models is conducted in a un...

متن کامل

The Onsager Algebra Symmetry of Τ -matrices in the Superintegrable Chiral Potts Model

We demonstrate that the τ (j)-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which w...

متن کامل

2 9 M ay 2 00 5 The Onsager Algebra Symmetry of τ ( j ) - matrices in the Superintegrable Chiral Potts Model

We demonstrate that the τ (j)-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of eight-vertex model for roots of unity and superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations , by which we extra...

متن کامل

The S4-action on the Tetrahedron Algebra

The action of the symmetric group S4 on the Tetrahedron algebra, introduced by Hartwig and Terwilliger [HT05], is studied. This action gives a grading of the algebra which is related to its decomposition in [HT05] into a direct sum of three subalgebras isomorphic to the Onsager algebra. The ideals of both the Tetrahedron algebra and the Onsager algebra are determined.

متن کامل

The Universal Askey–Wilson Algebra

Let F denote a field, and fix a nonzero q ∈ F such that q 6= 1. We define an associative F-algebra ∆ = ∆q by generators and relations in the following way. The generators are A, B, C. The relations assert that each of A+ qBC − q−1CB q2 − q−2 , B + qCA− q−1AC q2 − q−2 , C + qAB − q−1BA q2 − q−2 is central in ∆. We call ∆ the universal Askey–Wilson algebra. We discuss how ∆ is related to the orig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009